Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A. Thiruvalluvar, ${ }^{\text {a* }}$

V. Parthasarathi, ${ }^{\text {b }}$
V. Kabaleeswaran, ${ }^{\text {c }}$ S. S. Rajan, ${ }^{\text {c }}$
A. Nagarajan ${ }^{\text {d }}$ and M. Krishna Pillay ${ }^{\text {d }}$
${ }^{\text {a Department of Physics, Rajah Serfoji Govt }}$ College, Thanjavur 613 005, Tamilnadu, India, ${ }^{\mathbf{b}}$ Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India, ${ }^{\text {c }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and dDepartment of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, India

Correspondence e-mail: athiru@eth.net

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.144$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

5-(4-Chlorophenyl)-3-oxa-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]-dec-4-ene

The asymmetric unit of the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}$, contains two crystallographically independent molecules related by a pseudo-inversion centre at (1.00, 0.65, 0.25). The isoxazoline rings of these two molecules are planar and the structure analysis confirms the exo-orientation of the isoxazole ring to norbornane. The two molecules in the asymmetric unit differ in the conformation of the chlorophenyl rings.

(I)

Experimental

The title compound was obtained employing Torssell's one-pot synthesis (Larsen \& Torssell, 1984) by the cycloaddition of norbornene with 4-chlorobenzonitrile oxide (Nagarajan \& Krishna Pillay, 1993). Recrystallization from ethanol afforded the crystals. The yield of isolated product was 75%.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}$
$M_{r}=247.73$
Monoclinic, $P 2_{1} / n$
$a=11.782$ (4) А
$b=10.288$ (3) \AA
$c=20.461$ (3) \AA
$\beta=100.20(2)^{\circ}$
$V=2440.9(11) \AA^{3}$
$Z=8$
$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
Cu $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=7-32^{\circ}$
$\mu=2.62 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Block, colourless
$0.20 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
4716 measured reflections
4622 independent reflections
3767 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.144$
$S=1.05$
4622 reflections
308 parameters
H -atom parameters constrained
$\theta_{\text {max }}=69.9^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 12$
$l=-24 \rightarrow 24$
3 standard reflections every 100 reflections intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0849 P)^{2}\right.$ $+0.5370 \mathrm{P}]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.38$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.0027 (3)

Received 15 November 2001 Accepted 23 November 2001 Online 30 November 2001

View of the asymmetric unit of (I), with displacement ellipsoids shown at the 50% probability level (Farrugia, 1997).

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{O} 3 A-\mathrm{N} 4 A$	$1.411(2)$	$\mathrm{O} 3 B-\mathrm{N} 4 B$	$1.413(2)$
$\mathrm{N} 4 A-\mathrm{C} 5 A$	$1.279(2)$	$\mathrm{N} 4 B-\mathrm{C} 5 B$	$1.283(2)$
$\mathrm{C} 6 A-\mathrm{C} 5 A-\mathrm{C} 51 A-\mathrm{C} 56 A$	$-16.4(3)$	$\mathrm{C} 6 B-\mathrm{C} 5 B-\mathrm{C} 51 B-\mathrm{C} 56 B$	22.3 (3)
$\mathrm{N} 4 A-\mathrm{C} 5 A-\mathrm{C} 51 A-\mathrm{C} 52 A$	-12.8 (3)	$\mathrm{N} 4 B-\mathrm{C} 5 B-\mathrm{C} 51 B-\mathrm{C} 52 B$	20.6 (3)

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

AT thanks UGC, India, for the award of a teaching fellowship. AN wishes to thank UGC for the award of a senior research fellowship.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Larsen, K. E. \& Torssell, K. B. G. (1984). Tetrahedron, 40, 2985.
Nagarajan, A. \& Krishna Pillay, M. (1993). Indian J. Chem. Sect. B, 32, 471474.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

